
平方差公式教学设计
作为一位杰出的老师,时常要开展教学设计的准备工作,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。教学设计应该怎么写才好呢?下面是小编整理的平方差公式教学设计,希望对大家有所帮助。
平方差公式教学设计1一、设计思想
本节课是围绕“引导学生有效预习”的课题设计的,通过预设的问题引发学生思考,在学生的预习基础上回答相关的问题,产生对整式的乘法、提公因式法和公式法的对比。
让学生充分自主的对知识产生探究,同时利用数形结合的思想验证平方差公式;再通过质疑的方式加深对平方差公式结构特征的认识,有助于让学生在应用平方差公式行分解因式时注意到它的前提条件;通过例题练习的巩固,让学生把握教材,吃透教材,让学生更加熟练、准确,起到强化、巩固的作用,让学生领会换元的思想,达到初步发展学生综合应用的能力。
二、教材分析
本节课是运用提公因式法后公式法的第一课时——用平方差公式法分解因式。它是整式乘法的平方差公式的逆向应用,它是解高次方程的基础,在教材中具有重要的地位。在教材的处理上以学生的自主探索为主,在原有用平方差公式进行整式乘法计算的知识的基础上充分认识分解因式。明确因式分解是乘法公式的一种恒等变形,让学生学会合情推理的能力,同时也培养了学生爱思考,善交流的良好学习惯。
三、学情分析
本课程所教授的学生程度相对较好,学生已经学习了乘法公式中的平方差公式,本节课是整式乘法的平方差公式的逆向应用,学生在前一阶段的学习中掌握效果较好,为本节课的教学奠定了良好的基础。同时初二的.数学教学以“引导学生有效预习”为小课题,学生已经建立较好的预习习惯,为本节课的难点突破提供了先决条件。但是学生的预习与课堂的学习仍需要教师的合理引导和有效掌握,对一些相对落后的学生来说应注重突出重点,分析透彻,所以在教学时充分考虑到学生已经掌握平方差公式的前提,通过问题引发学生思考,提高学生兴趣入手,培养学生的自主探索,合作交流的能力,在轻松的氛围中完成教学任务,从而增强学好数学的愿望与信心
四、教学目标
(一)知识与技能
1.掌握运用平方差公式分解因式的方法。
2.掌握提公因式法、平方差公式分解因式的综合应用。
(二)过程与方法
1.经历探究分解因式方法的过程,体会整式乘法与分解因式之间的联系。
2.通过乘法公式:(a+b)(a-b)=a2-b2逆向变形,进一步发展观察、归纳、类比、概括等能力,发展有条理地思考及语言表达能力。
3.通过活动4,将高次偶数指数向下次指数的转达化,培养学生的化归思想。
4.通过活动1,发现并归纳出因式分解的又一方法:逆用整式乘法的平方差公式,得到a2-b2 =(a+b)(a-b)。
5.通过活动4,让学生自己发现问题,提出问题,然后解决问题,体会在解决问题的过程中与他人合作的重要性。
(三)情感与态度
1.通过探究平方差公式,让学生获得成功的体验,锻炼克服困难的意志,建立自己信心。
平方差公式教学设计2教学目标
1.经历探索平方差公式的过程,会推导平方差公式;
2.能利用平方差公式进行简单的运算。
在探索平方差公式的过程中,发展学生的符号感和推理能力。在计算的过程中发现规律,并能用符号表达,体会数学语言的严谨与简洁。
激发学习数学的兴趣,鼓励学生自己探索,培养学生的合作意识与创新能力。
重点难点
重点
平方差公式的推导和运用
难点
平方差公式的结构特点和灵活运用。
教学过程
一、复习导入
1.回顾多项式乘多项式的法则。
2.创设情境:你能快速地口算下列式子的值吗?
(1);(2).
师生共同想办法,想到能否把数转化成较整的数?
变形成:,
再试试把它当成多项式乘法来算算,有什么发现?
继续用你发现的方法算算,,,成功了吗?
我们把这个有趣的结论整理并推广,就可以得到今天要学习的一个乘法公式,平方差公式。
二、新课讲解
探究新知
1.观察相乘的两个多项式有什么特点?运算的结果有什么特点?
讨论交流后总结出:两个数的和与这两个数的差的积,等于这两个数的平方差。
2.把式子里具体的数换成字母表示的数,结论还成立吗?
3.从上面的.计算中你有什么发现呢?
引导学生发现对于不同形式的两个数,都有它们的和与它们的差的积都等于它们的平方差!用公式表示就是:,这里字母是任意形式的两个数。这个公式叫做平方差公式。
4.你能通过演算推导出平方差公式吗?
最终得到平方差公式:
平方差公式的理解应用
下列多项式乘法中,能用平方差公式计算的是_______________(填写序号)
(1);(2);(3);
(4);(5);(6).
学生分组讨论交流,归纳什么情况下可以使用平方差公式。通过讨论,对平方差公式的理解达到一个新的高度:所谓两数和、两数差,从多项式的角度来看,就是有一项相同(),有一项相反(和),只要相乘的两个多项式具备这样的特点,都可以用平方差公式计算。不难判断,上面的式子中(2)、(5)、(6)都可以用平方差公式计算。
三、典例剖析
例1运用平方差公式计算:
师生共同解答,教师板书。初学运用时要写清楚步骤。
例2运用平方差公式计算:
学生解答,关注学生是否理解平方差公式,能否正确识别乘法公式里的。
例3.计算:
学生解答,教师巡视,关注学生能否合理变形,灵活运用公式计算。
四、课堂练习
1.下面各式的计算对不对?如果不对,应怎样改正?
(1);
2.运用平方差公式计算:
(1);(2);
(3);(4).
3.计算:
(1);(2);
教师要注意发现学生的错误,组织学生对错误进行分析,对于第1题可以引导学生分析导致错误的原因。
五、小结
师生共同回顾平方差公式的结构特点,体会公式的作用,交流计算的经验。教师对课堂上学生掌握不够牢固的知识进行辨析、强调与补充,学生也可以谈一谈个人的学习感受。
六、布置作业
P50第1、6题
平方差公式教学设计3 < ……此处隐藏6803个字……p>四、达标堂测五、归纳小结
平方差公式:(a+b)(a-b)=a2-b2
即两数 和 与两数 差的积,等于它们的平方差。
六、布置作业
P21:习题1.91、2
平方差公式教学设计10教学内容:
P108—110平方差公式例1例2例3
教学目的:
1、使学生会推导平方差公式,并掌握公式特征。
2、使学生能正确而熟练地运用平方差公式进行计算。
教学重点:
使学生会推导平方差公式,掌握公式特征,并能正确而熟练地运用平方差公式进行计算。
教学难点:
掌握平方差公式的特征,并能正确而熟练地运用它进行计算。
教学过程:
一、复习引入
1、复述多项式与多项式的乘法法则
2、计算(演板)
(1)(a+b)(a—b)(2)(m+n)(m—n)
(3)(x+y)(x—y)(4)(2a+3b)(2a—3b)
3、引入新课,由
2题的计算引导学生观察题目特征,结果特征(引入新课,板书课题)
二、新课
1、平方差公式
由上面的运算,再让学生探究现在你能很快算出多项式(2m+3n)与多项式(2m—3n)的乘积吗?引导学生把2m看成a,3n看成b写出结果。
(2m+3n)(2m—3n)=(2m)2—(3m)2=4m2—9n2
(a + b)(a — b)= a2 — b2
向学生说明:我们把(a+b)(a—b)=a2— b2(重点强调公式特征)叫做平方差公式,也就是:两个数的和与这两个数的差等于这两个数的平方差。
3、练习:判断下列式子哪些能用平方差公计算。(小黑板)
(1)(—x—2y)(—x+2y)(2)(—2a+3b)(2a—3b)
(3)(a+3b)(3a—b)(4)(—m—3n)(m—3n)
2、教学例1
(1)(2x+1)(2x—1);(2)(x+2y)(x—2y)
(2)分析:让学生先说一说这两个式子是否符合平方差公式特征,再说一说哪个相当于公式中的'a,哪个相当于公式中的b,然后套公式。
(3)具体解题过程:板书,同教材,略
3、教学例2例3
先引导学生分析后指名学生演板,略
4、练习:课本P110 1(指名演板)
2、(口答)
3、演板
三、巩固练习:(小黑板)
1、填空:(1)(x+3)(x—3)=__________
(2)(—1—2x)(2x—1)=______
(3)(—1—2x)(—2x+1)=_____________
(4)(m+n)()=n2—m2
(5)()(—x—1)=1—x2(6)()(a—1)=1—a2
2、选择题
(1)下列可以用平方差公式计算的是()
A、(2a—3b)(—2a+3b)
B、(— 4b—3a)(—3a+4b)
C、(a—b)(b—a)
D、(2x—y)(2y+x)
(2)下列式子中,计算结果是4x2—9y2的是()
A、(2x—3y)2
B、(2x+3y)(2x—3y)
C、(—2x+3y)2
D、(3y+2x)(3y—2x)
(3)计算(b+2a)(2a—b)的结果是()
A、4a2— b2
B、b2— 4a2&
平方差公式教学设计11一、教学目标:
1、使学生理解和掌握平方差公式,并会用公式进行计算;
2、注意培养学生分析、综合和抽象、概括以及运算能力,培养应用数学的意识;
3、在紧张而轻松地教学氛围内,进一步激发学生的学习兴趣热情。
二、重点、难点:
重点是掌握公式的结构特征及正确运用公式。难点是公式推导的理解及字母的广泛含义。
三、教学方法
以教师的精讲、引导为主,辅以引导发现、合作交流。
四、教学过程
(一)创设问题情境,引入新课
1、你会做吗?
(1)(x+1)(x—1)=_____=()()
(3)(3x+2)(3x—2)= _____=()()
2、能否用简便方法运算:×(这里需要用到平方差公式,设疑激发学生兴趣。)
(二)探索规律,归纳平方差公式
交流上面第1题的答案,引导学生进一步思考:
两个二项式相乘,乘式具备什么特征时,积才会是二项式?为什么具备这些特点的两个二项式相乘,积会是两项呢?而它们的积又有什么特征?
(合作交流,探究新知:两数之和与这两数之差相乘时,积是二项式。这是因为具备这样特点的`两个二项式相乘,积的四项中,会出现互为相反数的两项,合并这两项的结果为零,于是就剩下两项了。而它们的积等于这两个数的平方差。)
我们把(a+b)(a—b)=a—b叫做乘法的平方差公式。再遇到类似形式的多项式相乘时,就可以直接运用公式进行计算。(在此基础上,让学生用语言叙述公式,并让学生熟记。)
(三)尝试探究
(四)巩固练习
1、运用平方差公式计算:
(l)(x+a)(x—a)
(2)(m+n)(m—n)(3)(a+3b)(a—3b)
(4)(1—5y)(l+5y)(5)998×1002
(6)395×405
2、直接写出答案:
(l)(—a+b)(a+b)
(2)(a—b)(b+a)
(3)(—a—b)(—a+b)
(4)(a—b)(—a—b)(5)999×1001
(6)×(让学生独立完成,互评互改。)
(五)小结
1.什么是平方差公式?
2.运用公式要注意什么?
(1)要符合公式特征才能运用平方差公式;
(2)有些式子表面不能应用公式,但实质能应用公式,要注意分清a、b。
(学生回答,教师总结)
(六)作业
P106习题1—5题
七、板书设计:
教学反思
通过精心备课,本节课在教学中是比较成功的。成功之处在于整个教学流程环环相扣,层层递进,抓住了学生思维这条主线,遵循由浅入深,由特殊到一般的认知规律,引起学生的兴趣。使他们能够积极参与其中,同时,使他们的思维得到了锻炼和发展。不足之处:时间安排不是很合理,前松后紧。课堂上没有给更多的学生提供展示自己思考结果的机会,过于注重“收”,而“放”不够。



